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Abstract English 
 
 This article describes an outdoor/indoor navigation system based on foot-mounted MEMS 
inertial measurement units (IMU) combined with a GNSS receiver and a relative antenna position. 
The system can operate for longer periods without a GNSS signal due to the zero-velocity and zero-
rotation detection algorithms. The presented system was developed at the Hochschule Karlsruhe by 
the authors. The performance of this system is shown. It is also compared to a smartphone IMU 
(with the same algorithms). Additionally two approaches are shown to increase the performance of 
foot-mounted inertial navigation systems: a) the calibration of the gyroscope bias with zero-rotation 
updates and b) limit the height error on flat surfaces with a height stabilization method, which helps 
in estimating the accelerometer bias and also improves the horizontal positioning accuracy.  
 
Abstract German 

 
Dieser Beitrag beschreibt ein Indoor-Navigationssystem auf Basis von MEMS 

Inertialsensoren (IMUs) am Fuß in Kombination mit einem GNSS Empfänger mit verorteter GNSS 
Antenne. Das System kann einen GNSS-Ausfall mit Hilfe von Stillstandserkennungsalgorithmen 
(Zero-Velocity Detection) überbrücken. Dabei wird zum einen ein System vorgestellt, das an der 
Hochschule Karlsruhe von den Autoren entwickelt wurde, zum anderen wird gezeigt, was mit den 
Sensoren aus einem handelsüblichen Smartphone möglich ist, da beide Systeme im Kern eine 
vergleichbare Konfiguration enthalten. Zusätzlich werden zwei Modelle gezeigt, um die 
Genauigkeit zu steigern. Zum einen über eine Null-Rotationserkennung (diese muss getrennt von 
der Stillstanderkennung gerechnet werden), zum anderen wird ein Höhenfixierungsalgorithmus 
vorgestellt, der innerhalb von Gebäuden den Höhenfehler limitiert, die Beschleunigungsmesser-
Fehlerschätzung stützt und damit auch den horizontalen Fehler reduziert. 

 
 

Key words: ZUPT, ZRU, Indoor, IMU, GNSS, INS, barometer, multi-sensor navigation, 
lever arms, self-calibration. 
 
1. Introduction 
 

While the estimation of the navigation state (position, velocity and orientation) 
with GNSS receivers and MEMS-based inertial sensors is not difficult, the outage of 

GNSS renders such a system unusable (at least for position and velocity) after a few 
hundred milliseconds or seconds (depending on the quality of the MEMS sensors). 
This problem can be mitigated with zero-velocity updates as shown by [3] with the 
help of foot-mounted IMUs. The detection of zero-velocity phases can be based on 
the IMU readings, see e. g. [7] for an evaluation of methods. In [1] it is shown that a 
dedicated pressure sensor (to detect a contact with the ground) inserted in the insole 
of a shoe in order to identify stance phases can outperform IMU-based zero-velocity 
detection algorithms. A combination of map-matching and particle-filtering can 
improve the solution further, as shown in [5]. This requires a geo-referenced model 
(figure 1). There are a couple of different sensors to install in a building to augment 
indoor navigation, e. g. infrared sensors, ultrasonic tags and crickets, RSSI systems 
(Received Signal Strength Information) and computer vision based systems (e. g. 
cameras with barcode-like markers); a good overview can be found in [6]. If a second 
IMU is mounted on the second shoe of the pedestrian, the accuracy can be increased 
by using a Kalman filter with inequality constraints, as demonstrated by [10]. 

In this article the mathematical model for an IMU/GNSS based system is 
outlined in section 2. Section 3 describes the sensors used in the indoor/outdoor test 
in section 4. A method to stabilize the height is presented in section 5 and our 
implemented zero-rotation detection is shown in section 6. The system is also tested 
with a smartphone IMU (section 7) instead of the IMU from section 4. 
 

 
Figure 1: Calculated foot-mounted IMU trajectory in a georeferenced 3D model of a 

Hochschule Karlsruhe building (building B) 
 

 
2. Mathematical model 
 

The core of the pedestrian navigation is a 15 state error-state Kalman filter with 
additional zero-velocity and zero-rotation detection algorithms. The system has the 
following state space model, as described in [11]: 
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In equation (1) is	Δp�	 the position error (in the n-frame), Δv�	 the velocity error in the n-
frame, Δψ��	 the three component attitude error (from body to n-frame) and the sensor 

bias errors Δb�	
,/ Δb�	�. The current estimated rotation matrix	���	is the transformation 
from the body-frame to the navigation-frame (n-frame). [�� ×] is the skew 
symmetric matrix of the acceleration relative to free fall in the navigation frame 
(specific force or proper acceleration). The accelerometer and gyroscope bias errors 
are modeled as random-walk processes with equation (2). The accelerometer sensor 
noise is added with the vector n�	
, the gyroscope sensor noise with the vector n�	�. The 
stochastic modeling of the IMU sensor errors is critical if the MEMS sensors have a 
significant bias, but this requires absolute measurements, such as barometric heights 
and/or GNSS measurements. Otherwise it can be beneficial for well-calibrated 
sensors to discard the bias modeling for indoor navigation scenarios, as shown in [8]. 
The accelerometer is used to stabilize roll and pitch during zero-velocity phases. The 
yaw angle could be provided by a magnetometer but in buildings the magnetometer is 
often unusable near the ground, see [2]. A magnetometer (combined with the 
WMM2010 model) was only used for an initial alignment in the indoor scenarios, 
otherwise GNSS was used to estimate the heading in the filter routines during 
acceleration periods with the system model in equation (1). The complete measure-
ment equation model for the Kalman filter is described in [11]. Equation (1) and (2) 
are integrated over time (depending on the sampling rate) to form a complete Kalman 
filter. 
Quite a few different approaches for the detection of zero-velocity epochs on foot-
mounted IMUs can be found in literature such as in [3], [4] and [9]. In the described 
algorithm below several of these approaches are combined. The functionality reads as 
follows (1 = true) for every epoch at an epoch k: 
 
The norm of the gyroscope-measurement-vector ω()*+,-$  is below a threshold	t� : 
 

C1- = 11, ω()*+,-$ < t�0, 3�ℎ56"785  (3) 

 
The norm of the accelerometer-measurement-vector a()*+,-$  is in between two 

thresholds t
_+;(and	t
_+
<: 
 

C2- = 11, t
_+;( < a()*+,-$ < t
_+
<0, 3�ℎ56"785  (4) 

 
The standard deviation of the norm of the accelerometer measurement vector s
,-$  is 

below a threshold σ
  (over n epochs, depending on the sampling rate of the sensor): 
 

C3- = 11, s
,-$ < σ
0, 3�ℎ56"785 (5) 

 
The standard deviation of the norm of the gyroscope measurement vector s�,-$  is be-
low a threshold	σ� : 

C4- = 11, s�,-$ < σ�0, 3�ℎ56"785 (6) 

 
For a zero-velocity update at a given epoch k, C1- to	C4- must all be 1. If a zero-
velocity epoch is detected, a pseudo-measurement is then applied in the filter which 
leads to corrections of the navigation solution. 
 
3. Custom IMU 
 
A custom INS/IMU was developed at the Hochschule Karlsruhe in cooperation with 
the company teXXmo GmbH (www.robinette.de). The custom INS can run the filter 
algorithms directly on-board or it can output the raw sensor data for the processing on 
e. g. a laptop (IMU mode). The exact hardware specs are listed in table 1. The 
algorithms run on a normal PC, but the same source code is also used on a 
microcontroller (MCU). For the following tests, the system was used in pure raw-data 
mode. The GNSS receiver emits GPS raw data (code-, phase- and Doppler 
measurements), so a differential GNSS solution can be calculated in post-processing 
with a GNSS reference station. 
 

Table 1: Custom INS/IMU components. 
MCU STM32F407 32-bit 168 MHz ARM Cortex-M4 with 

FPU 
Gyroscope InvenSense ITG-3200 Gyroscope 
Accelerometer Bosch BMA280 Accelerometer 
Magnetometer Honeywell HMC5883L 
GNSS receiver u-blox LEA 6-T 
Real-time OS ChibiOS 2.6 stable branch 
Barometer MS5611 Barometer 



 
Figure 2 shows the custom INS/IMU mounted on a shoe. This setup was used to 
capture all the raw-data for the analysis in this article, except for the smartphone IMU 
section. A L1/L2 helix antenna is attached to the system (Antcom Corp. P/N: 
321216P-XS-X). 
 

 
Figure 2: Custom low-cost IMU with integrated GPS receiver and GPS helix antenna 

 
 
4. Simulated GNSS Outtake for Seamless Navigation 
 

To test the seamless indoor/outdoor capabilities of the navigation algorithms, 
an 11-minute walk around the Hochschule Karlsruhe campus was tracked with the 
custom foot-mounted IMU/GNSS system (see figure 2). The total walking distance 
was 1 km. During this time a single frequency GPS solution was available the whole 
time. For the seamless indoor/outdoor test, the GPS signal was removed from the 
processing after 120 seconds to simulate a GPS outage for 7 minutes.  The initial two 
minutes of GPS information allows the filter to stabilize the accelerometer bias 
estimation (see figure 4) and estimate the yaw angle. The advantage of the system is 
that the GPS antenna has a fixed lever arm relative to the IMU. Other systems mount 
the GPS antenna on the shoulder of the pedestrian [2]. With the fixed antenna 
configuration, the L1-GPS and MEMS combination works very well even without 
zero-velocity updates. 
At the end of the outage, the position gets corrected by the L1 GPS position 
measurement by 8 m; during the outage, the trajectory was provided solely by the 
IMU and the zero-velocity/zero-rotation detection. The resulting trajectory is 
depicted in figure 2. The same trajectory is also shown in Google Earth in figure 3. 
Figure 3 also contains the estimated orientation as an orange arrow. It can also be 
seen that the yaw-angle gets corrected with the re-enabled GPS position. 

  

 
Figure 3: Trajectory with a seven-minute simulated GNSS outage 

 

 
 

Figure 4: Same trajectory (from figure 3) visualized in Google Earth. Arrows indicate walking 
direction (Hochschule Karlsruhe Campus) 
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5. Height stabilization methods 
 
When no initial GNSS position is available, the pedestrian IMU navigation works 
well, except for the height channel, if the accelerometer has a significant bias. Fig-
ure 5 shows a 400 m trajectory where a pedestrian walks the same track eight times 
and stops exactly at the starting point. The 2D difference from the starting point is 
70 cm, which is a relative error of about 0.18 %. But the height difference from the 
start is almost 10 m. To stabilize the height, barometer measurements are enabled for 
the same data set. The resulting trajectory can be seen in figure 6. This reduces the 
resulting height difference to about 1 m, and also improves the 2D error: 25 cm (rela-
tive error: 0.06 %). 
 
Another possible way to stabilize the height is to make a very simple assumption 
about the ground surface: if the surface is flat (with the exception of stairs), the height 
from the previous step (∆�CDEF seconds ago, i. e. ℎ(� − ∆�CDEF)) should equal the 
height from the current step (height at time t: ℎ(�)). The height difference from the 
current epoch to the last detected step is �ℎ (�ℎ = 	ℎ(�) − ℎ(� − ∆�CDEF)). 
 

ℎ(�)IJKKEIDEL = Mℎ(� − ∆�CDEF), �ℎ < 5 OPℎ(�), �ℎ ≥ 5 OP 
 

(3) 
 
If �ℎ is smaller than the defined threshold (here 5 cm), a virtual height measurement 
(with the height from the previous step) is added to the Kalman filter to stabilize the 
height channel. If the difference is larger, no virtual measurement is added (the new 
height is accepted). This approach only works well if the surface is actually flat (e. g. 
strict indoor scenarios). Figure 7 shows this algorithm applied to the data-set from 
figure 5 and 6. No barometer is used in figure 7. The height error is even smaller: 
32 cm and the 2D error is reduced to 12 cm (relative error 0.03 %). The tests are 
summarized in table 2. Another test with staircases was performed to see if the algo-
rithm works in this case too. The resulting height profile is shown in figure 8 and it 
can be seen that the height fixing works in this case too. The requirement is that the 
stairs have a height difference of more than 5 cm. With better sensors, this threshold 
can be reduced. This algorithm can be tuned with the threshold and the standard devi-
ation of the virtual measurement, so this can be seen as a soft-constraint in the Kal-
man filter. In the example data-set of figure 7, a standard deviation of 10 cm for the 
soft-constraint was used. In a mixed indoor/outdoor scenario, the standard deviation 
could be set to higher values like 1-2 m, but in this case a barometer works better. 

Table 2: Height error of a 10-minute walk (uncalibrated acc.) 
 

 Height error (m) Relative 2D error Trajectory 
No height stabilization 9.74 m 0.18 % Figure 5 
With barometer 0.92 m 0.06 % Figure 6 
Height stabilization algorithm 0.12 m 0.03 % Figure 7 

 
Figure 5: Height divergence with an uncalibrated accelerometer 

 

 
Figure 6: Height with an uncalibrated accelerometer, but with enabled barometer 

 

 
 

Figure 7: Height divergence with flat surface assumption (without barometer) 
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Figure 8: Walking upstairs with the flat surface assumption (without barometer) 
 

 
 

 
6. Zero Rotation Detection 

 
Figure 9: Same data-set without ZRU (left side),with ZRU (right side) - 10-minute walk 

 
An important aspect is the detection of zero rotation epochs. During epochs 

with no rotation, artificial zero rotation updates (ZRU) can be performed (the Earth 
rotation can be removed in the calculations, but the Earth rotation is small compared 
to the capabilities of today’s MEMS gyroscopes anyway). It should be noted that 
ZRU normally doesn’t happen during walking, so only when the user/pedestrian has a 
stable stance position for a longer period of time (several hundred milliseconds) does 
a true ZRU make sense. False zero rotation updates can harm the gyroscope bias es-
timation severely. But if applied correctly, occasional ZRUs can improve the naviga-
tion solution by reinforcing the gyroscope bias estimation. This can be seen in fig-
ure 9, where on the left side a gyroscope with a bias of -0.003 rad/s in the Z-axis is 
used. Without ZRUs and only zero-velocity updates, the filter fails to correctly esti-
mate the gyro bias along the local plumb-line (which is approximately the Z-axis in 
this example). The result is the drift in figure 9. If ZRUs are enabled, the gyro bias 
can be estimated after a few milliseconds along all three gyro axis and the resulting 
trajectory improves dramatically (see figure 9, right side), as well as the bias standard 
deviation (see table 3). 
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Table 3: Gyroscope bias estimation with and without ZRUs 
 

 Bias Gyroscope (rad/s) 
Without ZRU (figure 9, left side) -0.008 -0.013  0.005 (±0.003) 
With ZRU (figure 9, right side) -0.015 -0.011 -0.003 (± 0.000045) 

 
The mathematical model for the ZRU detection is decoupled from the ZUPT update 
routines. For the ZRU detection, only gyroscope data is analyzed and the variance is 
calculated (8RS , with the redundancy	6T ) over a time interval	�UVW. The true variance 
(XRS ) of the respective sensor in rest has to be calculated in a controlled environment 
without external vibrations. The hypothesis can then be tested with the Fisher distri-
bution: 
 
Null hypothesis: E{8RS } = XRS  
 
Alternative hypothesis: E{8RS }	> XRS  
 
Test value: 

Z = 8RSXRS  

 
Critical value (with significance level	[): 
 ZK\,],\^_  

 
The larger variance has to be assigned to the index 1 for the critical value calculation. 
 
 
7. Smartphone IMU 
 

Most of today’s smartphones come with a built-in IMU. This leads to the ques-
tion of whether these low-cost devices can be used in indoor- and outdoor navigation 
scenarios. For this purpose a smartphone (Samsung Galaxy S3) is put in a case which 
is strapped with a hook-and-loop fastener 
to one shoe (see figure 10). In order to ob-
tain the raw data of the IMU an app was 
written which records the raw sensor 
measurements for post-processing. The 
frequency amounts to approx. 100 Hz. 
With the smartphone IMU the same hall-
way-loop was walked 5 times, with each 
walk as a timely independent measurement 

(fixed start and end point). The resulting 
trajectories of these raw data measure-Figure 10: Smartphone mounted on shoe 



ments are shown in figure 11. The length of one such track was approx. 100 m long.  
 

Table 4: Errors of the repeated time-independent walks depicted in figure 11 – average walking 
time approx. two minutes  

 
run number Length [m] 2D error [m] 3D error[m] Relative 2D error [%] 

1 98.33 2.20 2.92 2.24 
2 105.22 2.75 3.98 2.62 
3 105.20 4.86 4.87 4.62 
4 104.90 3.18 3.50 3.04 
5 102.90 3.18 3.18 3.09 

 
 

As illustrated in table 4 the errors of these smartphone-walks are larger compared to 
dedicated IMUs (section 5), therefore a current uncalibrated internal smartphone IMU 
could be used for indoor navigation to bridge short distances (< 100 m). With a 
proper configuration (higher sampling rate, appropriate bandwidth filters) and a 
misalignment calibration the results would be of course better, but it is informative to 
see how such an IMU performs without these optimizations. It should be noted that 
the shape of this trajectory cancels out several systematic errors [8]. 

 
 

Figure 11: Repeated time-independent walks on the same track with a smartphone IMU – walking 
time approx. two minutes (errors in table 4) 
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8. SUMMARY 
 

The concept and implementation of a low-cost indoor/outdoor pedestrian navi-
gation system, developed at the Hochschule Karlsruhe has been shown. The current 
generation of MEMS and L1-GNSS sensors are more than capable of providing an 
accurate navigation state vector for many different applications (with the right algo-
rithms). For example the live tracking of service personnel in a building (figure 12) is 
possible with this technology. The demonstrated INS-system can work in an autono-
mous way negating the need for additional techniques. It has been documented that 
the frequency bandwidth and noisiness of the IMU-measurements correlate with the 
time that the navigation solution is solid. A good zero-rotation detection can be es-
sential if the gyroscope is uncalibrated and the bias is high. For pure indoor scenarios 
with flat surfaces and stairs, the presented height stabilization method works reliably 
and increases the performance of the navigation system. 

 

 

Figure 12: Calculated and visualized trajectory in a georeferenced 3D model of a 
Hochschule Karlsruhe building (building B) 
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