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Abstract English

This article describes an outdoor/indoor navigasgstem based on foot-mounted MEMS
inertial measurement units (IMU) combined with a &Nreceiver and a relative antenna position.
The system can operate for longer periods withdBN&S signal due to the zero-velocity and zero-
rotation detection algorithms. The presented systesideveloped at the Hochschule Karlsruhe by
the authors. The performance of this system is shdinis also compared to a smartphone IMU
(with the same algorithms). Additionally two appebas are shown to increase the performance of
foot-mounted inertial navigation systems: a) thibeation of the gyroscope bias with zero-rotation
updates and b) limit the height error on flat scefawith a height stabilization method, which helps
in estimating the accelerometer bias and also irgzrohe horizontal positioning accuracy.

Abstract German

Dieser Beitrag beschreibt ein Indoor-Navigationssys auf Basis von MEMS
Inertialsensoren (IMUs) am FuB in Kombination niiteen GNSS Empfanger mit verorteter GNSS
Antenne. Das System kann einen GNSS-Ausfall mifeHibn Stillstandserkennungsalgorithmen
(Zero-Velocity Detection) Uberbriicken. Dabei winghz einen ein System vorgestellt, das an der
Hochschule Karlsruhe von den Autoren entwickeltderzum anderen wird gezeigt, was mit den
Sensoren aus einem handelsublichen Smartphone almdigti da beide Systeme im Kern eine
vergleichbare Konfiguration enthalten. Zusétzlicherden zwei Modelle gezeigt, um die
Genauigkeit zu steigern. Zum einen Uber eine NotbRonserkennung (diese muss getrennt von
der Stillstanderkennung gerechnet werden), zum randeird ein Hohenfixierungsalgorithmus
vorgestellt, der innerhalb von Gebauden den Holarfdimitiert, die Beschleunigungsmesser-
Fehlerschétzung stitzt und damit auch den horilmteehler reduziert.

Key words: ZUPT, ZRU, Indoor, IMU, GNSS, INS, bar ometer, multi-sensor navigation,
lever ar ms, self-calibration.

1. Introduction

While the estimation of the navigation state (posit velocity and orientation)
with GNSS receivers and MEMS-based inertial sensonet difficult, the outage of

GNSS renders such a system unusable (at leasbéitiqm and velocity) after a few
hundred milliseconds or seconds (depending on tfadity of the MEMS sensors).
This problem can be mitigated with zero-velocitydafes as shown by [3] with the
help of foot-mounted IMUs. The detection of zerdeeéty phases can be based on
the IMU readings, see e. g. [7] for an evaluatibmethods. In [1] it is shown that a
dedicated pressure sensor (to detect a contactthétiground) inserted in the insole
of a shoe in order to identify stance phases c@peciorm IMU-based zero-velocity
detection algorithms. A combination of map-matchiagd particle-filtering can
improve the solution further, as shown in [5]. Thégjuires a geo-referenced model
(figure 1). There are a couple of different sengorgstall in a building to augment
indoor navigation, e. g. infrared sensors, ultréséags and crickets, RSSI systems
(Received Signal Strength Information) and compuwision based systems (e. g.
cameras with barcode-like markers); a good ovendgawbe found in [6]. If a second
IMU is mounted on the second shoe of the pedestitinaccuracy can be increased
by using a Kalman filter with inequality constrainas demonstrated by [10].

In this article the mathematical model for an IMWSS based system is
outlined in section 2. Section 3 describes the @asngsed in the indoor/outdoor test
in section 4. A method to stabilize the height i®gented in section5 and our
implemented zero-rotation detection is shown irtise®. The system is also tested
with a smartphone IMU (section 7) instead of théJiflom section 4.

Figure 1: Calculated foot-mounted IMU trajectoryargeoreferenced 3D model of a
Hochschule Karlsruhe building (building B)

2. M athematical modd

The core of the pedestrian navigation is a 15 satw-state Kalman filter with
additional zero-velocity and zero-rotation detectaigorithms. The system has the
following state space model, as described in [11]:
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In equation (1) i4p the position error (in the n-frame&yy the velocity error in the n-
frame,AE} the three component attitude error (from body-foame) and the sensor

bias errorsﬁga,/ Aﬁm. The current estimated rotation matRig is the transformation
from the body-frame to the navigation-frame (n-fE@m[f™ x] is the skew
symmetric matrix of the acceleration relative teefrfall in the navigation frame
(specific force or proper acceleration). The acosteeter and gyroscope bias errors
are modeled as random-walk processes with equéjoriThe accelerometer sensor
noise is added with the vectdy, the gyroscope sensor noise with the vegiarThe
stochastic modeling of the IMU sensor errors ifiaai if the MEMS sensors have a
significant bias, but this requires absolute meam@nts, such as barometric heights
and/or GNSS measurements. Otherwise it can be ibihefor well-calibrated
sensors to discard the bias modeling for indooigaion scenarios, as shown in [8].
The accelerometer is used to stabilize roll anchpituring zero-velocity phases. The
yaw angle could be provided by a magnetometerrbbtildings the magnetometer is
often unusable near the ground, see [2]. A magrastimm(combined with the
WMM2010 model) was only used for an initial alignmhén the indoor scenarios,
otherwise GNSS was used to estimate the headintpanfilter routines during
acceleration periods with the system model in éqndgtl). The complete measure-
ment equation model for the Kalman filter is ddsed in [11]. Equation (1) and (2)
are integrated over time (depending on the sampéte) to form a complete Kalman
filter.

Quite a few different approaches for the detectibizero-velocity epochs on foot-
mounted IMUs can be found in literature such af3]n[4] and [9]. In the described
algorithm below several of these approaches arduwd. The functionality reads as
follows (1 = true) for every epoch at an epokh

The norm of the gyroscope-measurement-veothy;, x is below a threshol,:

b
Clk — 1' mnorm,k < tm (3)
0, otherwise

The norm of the accelerometer-measurement-vea:ﬁg;m_k is in between two
thresholdst, i,andt, may:

b
CZk — 1' ta_min < anorm,k < ta_max (4)
0, otherwise

The standard deviation of the norm of the acceletemmeasurement vecmﬁ‘_k is
below a threshold, (over n epochs, depending on the sampling ratieeo$ensor):

b
3, = 1, Sak < Oa )
0, otherwise

The standard deviation of the norm of the gyrosamegasurement vecteﬂ_k is be-
low a threshold :

b
C4y = {1' Sok < % 6)
0, otherwise

For a zero-velocity update at a given ep&¢lEl, toC4, must all bel. If a zero-
velocity epoch is detected, a pseudo-measuremeheisapplied in the filter which
leads to corrections of the navigation solution.

3. CustomIMU

A custom INS/IMU was developed at the Hochschuleldtahe in cooperation with
the company teXXmo GmbHMwvw.robinette.dg The custom INS can run the filter
algorithms directly on-board or it can output thersensor data for the processing on
e. g. a laptop (IMU mode). The exact hardware speslisted in table 1. The
algorithms run on a normal PC, but the same sowade is also used on a
microcontroller (MCU). For the following tests, tegstem was used in pure raw-data
mode. The GNSS receiver emits GPS raw data (coglkase- and Doppler
measurements), so a differential GNSS solutionbeanalculated in post-processing
with a GNSS reference station.

Table 1: Custom INS/IMU components.

MCU STM32F407 3-bit 166 MHz ARM Corte»-M4 with
FPU

Gyroscop InvenSense IT-3200 Gyroscog

Accelerometer Bosch BMA280 Accelerometer

Magnetometer Honeywell HMC5883L

GNSS receive u-blox LEA 6-T

Real-time OS ChibiOS 2.6 stable branch

Barometer MS5611 Barometer




Figure 2 shows the custom INS/IMU mounted on a sHtes setup was used to | Trajectory
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section. A L1/L2 helix antenna is attached to thstem (Antcom Corp. P/N: L e e R B
321216P-XS-X).
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Figure 2: Custom low-cost IMU with integrated GR®eiver and GPS helix antenna e

Figure 3: Trajectory with a seven-minute simula@dSS outage

4.  Simulated GNSS Outtakefor Seamless Navigation

To test the seamless indoor/outdoor capabilitiethefnavigation algorithms,
an 11-minute walk around the Hochschule Karlsrubmmpus was tracked with the
custom foot-mounted IMU/GNSS system (see figureThe total walking distance
was 1 km. During this time a single frequency GBlst®n was available the whole
time. For the seamless indoor/outdoor test, the GigBal was removed from the
processing after 120 seconds to simulate a GP$®tita 7 minutes. The initial two
minutes of GPS information allows the filter to itae the accelerometer bias
estimation (see figure 4) and estimate the yaweangie advantage of the system is
that the GPS antenna has a fixed lever arm rel&itike IMU. Other systems mount
the GPS antenna on the shoulder of the pedest#hnWith the fixed antenna
configuration, the L1-GPS and MEMS combination vgoslery well even without
zero-velocity updates.

At the end of the outage, the position gets coeckdty the L1 GPS position

measurement by 8 m; during the outage, the trajeat@s provided solely by the

IMU and the zero-velocity/zero-rotation detectiolfhe resulting trajectory is

depicted in figure 2. The same trajectory is alsoven in Google Earth in figure 3.

Figure 3 also contains the estimated orientatiomra®range arrow. It can also be
seen that the yaw-angle gets corrected with trenedled GPS position.

Figure 4: Same trajectory (from figu3) visualized in Google Earth. Arrows indicate walk
direction (Hochschule Karlsruhe Campus)



5. Height stabilization methods

When no initial GNSS position is available, the g&tdan IMU navigation works
well, except for the height channel, if the acoseeter has a significant bias. Fig-
ure 5 shows a 400 m trajectory where a pedestrakswhe same track eight times
and stops exactly at the starting point. The 2@ecdkhce from the starting point is
70 cm, which is a relative error of about 0.18 %it Be height difference from the
start is almost 10 m. To stabilize the height, bester measurements are enabled for
the same data set. The resulting trajectory caselea in figure 6. This reduces the
resulting height difference to about 1 m, and atsproves the 2D error: 25 cm (rela-
tive error: 0.06 %).
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Another possible way to stabilize the height isntake a very simple assumption e
about the ground surface: if the surface is flath(the exception of stairs), the height Figure 5: Height divergence with an uncalibrateccalerometer
from the previous stepA€s.., seconds ago, i. éi(t — Atg,p)) should equal the
height from the current step (height at timét)). The height difference from the
current epoch to the last detected stephigdh = h(t) — h(t — Atgep))-

Trajectory
O starting point
O End point

h(t — Atgep),  dh<5cm

h(t) correctea = { h(t) dh>5cm (3)

Lor

Height [m]

If dh is smaller than the defined threshold (here 5 emjirtual height measurement ¢
(with the height from the previous step) is addethe Kalman filter to stabilize the
height channel. If the difference is larger, nduat measurement is added (the new
height is accepted). This approach only works ¥ehle surface is actually flat (e. g. il (o
strict indoor Scenarios)_ Figure 7 shows this algm app“ed to the data-set from Figure 6: Height with an uncalibrated accelerometeut with enabled barometer
figure 5 and 6. No barometer is used in figure ie Theight error is even smaller:

32 cm and the 2D error is reduced to 12 cm (redagxror 0.03 %). The tests are p—
summarized in table 2. Another test with staircagas performed to see if the algo- 3 cpat
rithm works in this case too. The resulting heightfile is shown in figure 8 and it
can be seen that the height fixing works in thisecebo. The requirement is that the
stairs have a height difference of more than 5\&fith better sensors, this threshold
can be reduced. This algorithm can be tuned wighthheshold and the standard devi-
ation of the virtual measurement, so this can lem s a soft-constraint in the Kal-
man filter. In the example data-set of figure &tandard deviation of 10 cm for the
soft-constraint was used. In a mixed indoor/outdse®nario, the standard deviation - -
could be set to higher values like 1-2 m, but is ttase a barometer works better. Xl (uort) 0 ¥ Easy

Table 2: Height error of a 10-minute walk (uncaflbed acc.)

15 Y [m] (East)

Height [m]

. ] . Figure 7: Height divergence with flat surface asgtion (without barometer)
Height error (m Relative D erroi  Trajector

No height stabilization 9.74 m 0.18 % Figure 5
With barometer 0.92m 0.06 % Figure 6
Height stabilizatio algorithmr 0.1zm 0.0:% Figure -
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Figure 8: Walking upstairs with the flat surfacesamption (without barometer)

6. Zero Rotation Detection
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Figure 9: Same data-set without ZRU (left sidepuRU (right side) - 10-minute walk

An important aspect is the detection of zero rotatepochs. During epochs
with no rotation, artificial zero rotation updat€dRU) can be performed (the Earth
rotation can be removed in the calculations, betEhrth rotation is small compared
to the capabilities of today's MEMS gyroscopes aaylw It should be noted that
ZRU normally doesn’t happen during walking, so ontyen the user/pedestrian has a
stable stance position for a longer period of t{several hundred milliseconds) does
a true ZRU make sense. False zero rotation updarefiarm the gyroscope bias es-
timation severely. But if applied correctly, ocaasal ZRUs can improve the naviga-
tion solution by reinforcing the gyroscope biasreation. This can be seen in fig-
ure 9, where on the left side a gyroscope withas lof -0.003 rad/s in the Z-axis is
used. Without ZRUs and only zero-velocity updaths, filter fails to correctly esti-
mate the gyro bias along the local plumb-line (\ahie approximately the Z-axis in
this example). The result is the drift in figurelDZRUs are enabled, the gyro bias
can be estimated after a few milliseconds alonghaie gyro axis and the resulting
trajectory improves dramatically (see figure 9htigide), as well as the bias standard
deviation (see table 3).

Table 3: Gyroscope bias estimation with and withiéRtJs

Bias Gyroscope (rad/s)
Without ZRU (figure 9, left side) -0.008 -0.013005 (+0.003)
With ZRU (figure 9, right side) -0.015 -0.011 -0 0.000045)

The mathematical model for the ZRU detection isodpted from the ZUPT update
routines. For the ZRU detection, only gyroscopedsitanalyzed and the variance is
calculated £2, with the redundancw; ) over a time interval,,,. The true variance
(c2) of the respective sensor in rest has to be atledlin a controlled environment
without external vibrations. The hypothesis camthe tested with the Fisher distri-
bution:

Null hypothesis: E§2} = o2

Alternative hypothesis: B&} > o2

Test value:
Si
F = —2
Y7)
Critical value (with significance level):
T1,001-a

The larger variance has to be assigned to the ihdexthe critical value calculation.

7. SmartphonelMU

Most of today's smartphones come with a built-inUMThis leads to the ques-
tion of whether these low-cost devices can be usétdoor- and outdoor navigation
scenarios. For this purpose a smartphone (SamsalaxyzS3) is put in a case which
is strapped with a hook-and-loop fastener
to one shoe (see figure 10). In order to ob-
tain the raw data of the IMU an app was
written which records the raw sensor
measurements for post-processing. The
frequency amounts to approx. 100 Hz.
With the smartphone IMU the same hall-
way-loop was walked 5 times, with each
walk as a timely independent measurement

(fixed start and end point). The resultinn
trajectories of these raw data measu._

Figure 10: Smartphone mounted on shoe



ments are shown in figure 11. The length of ondadrack was approx. 100 m long.

Table 4: Errors of the repeated time-independerksvdepicted in figure 11 — average walking
time approx. two minutes

run number Length[m] 2D error [m] 3D errorfm] Relative 2D error [%]

1 98.33 2.20 2.92 2.24
2 105.22 2.75 3.98 2.62
3 105.20 4.86 4.87 4.62
4 104.90 3.18 3.50 3.04
5 102.9( 3.1¢ 3.1¢ 3.0¢

As illustrated in table 4 the errors of these sptavhe-walks are larger compared to
dedicated IMUs (section 5), therefore a currentalibcated internal smartphone IMU

could be used for indoor navigation to bridge stdigtances (< 100 m). With a

proper configuration (higher sampling rate, appiaipr bandwidth filters) and a

misalignment calibration the results would be afrse better, but it is informative to

see how such an IMU performs without these optitiona. It should be noted that

the shape of this trajectory cancels out sevesksayatic errors [8].
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Figure 11: Repeated time-independent walks ondheestrack with a smartphone IMU — walking
time approx. two minutes (errors in table 4)

8. SUMMARY

The concept and implementation of a low-cost inflagdoor pedestrian navi-
gation system, developed at the Hochschule Karshas been shown. The current
generation of MEMS and L1-GNSS sensors are mone thpable of providing an
accurate navigation state vector for many differgmplications (with the right algo-
rithms). For example the live tracking of serviergonnel in a building (figure 12) is
possible with this technology. The demonstrated-#y§em can work in an autono-
mous way negating the need for additional techrigitehas been documented that
the frequency bandwidth and noisiness of the IMUssneements correlate with the
time that the navigation solution is solid. A gopeto-rotation detection can be es-
sential if the gyroscope is uncalibrated and tlas 8 high. For pure indoor scenarios
with flat surfaces and stairs, the presented heiiitilization method works reliably
and increases the performance of the navigaticiesys
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Figure 12: Calculated and visualized trajectoryargeoreferenced 3D model of a
Hochschule Karlsruhe building (building B)



9. ACKNOWLEDGEMENT

The funding of the joint research project “GNSS/IN®d multi-sensor
navigation algorithms and platforms for mobile mgtion and object geo-
referencing” by the Ministry of Economics and ttevigation and mobile IT industry
of Baden-Wirttemberg is gratefully acknowledgede Tdbjective of the research
team ‘NAVKA' (www.navka.dg at the central research center at the Institdite o
Applied Research (IAF) at University of Applied 8cces Karlsruhe is to develop
robust algorithms for multi-sensor GNSS and MEMSdih platforms for the
navigation of arbitrary bodies and for mobile ind@nd outdoor geo-referencing
applications independent from extern infrastructiitee industrial partner IN GmbH
has provided a software 3D model of the Hochsckadsruhe campus building B
that is used for visualization (also in real-timéhathe Sphinx Open Online soft-
ware).

REFERENCES

[1] Bebek, O. et al. (2010Personal navigation via hi¢-resolution gai-corrected inertia
measurement unitsln: IEEE Transactions on Instrumentation and Measient.
Vol. 59/11.

[2] Bird, J., Arden, D. (2011 Indoor Navigation with Fo-Mounted Strapdown Intertii
navigation and Magnetic Sensorén: IEEE Wireless Communications Journal.
Volume 18. 2011.

[3] Foxlin, E. (2005):Pedestrian tracking with sh-mounted inertial sensc. In: Comput-
er Graphics and Applications, IEEE. Vol. 25.

[4] Godha, S and Lachapelle, G. (2008pot mounted inertial system for pedestr
navigation In: Measurement Science and Technology. Vol. . 1@P Publishing.

[5] Klingbeil, L., Romanovas, M. (2012Rekursive Bayesische Schatzverfahren zua-
lisierung von Personen innerhalb von Gebaudanzfv 6/2012.

Publisher: DVW e.V. — Gesellschaft fir GeodasiepiG®rmation und Landmanage-
ment.

[6] Koyuncu, H., Yang, S. H. (2010k Survey of Indoor Positioning and Object Locat
Systemsin: IJCSNS International Journal of Computer Sceeand Network Security,
Vol. 10/5, May 2010.

[7]1 Nilsson, J., Skog, I., Handel, P. (2018xaluation of zer-velocity detectors fofoot-
mounted inertial navigation systeméndoor Positioning and Indoor Navigation
Conference (IPIN).

[8] Nilsson, J., Skog, I., Handel, P. (201A note on the limitations of ZUPTs and
implications on sensor error modelingroceeding of 2012 International Conference on
Indoor Positioning and Indoor Navigation (IPIN),-18" November 2012.

[9] Park, S. K. and Suh, Y. S. (201@®):Zero Velocity Detection Algorithm Using Inert
Sensors for Pedestrian Navigation SysteimsSensors. Vol. 10/10. Publisher: Molec-
ular Diversity Preservation International.

[10] Skog, I., Nilsson, J., Zachariah, D. and Hande(2P12):Fusing the information fror
two navigation systems using an upper bound onr theximum spatial separation.
Proceeding of 2012 International Conference on dndBositioning and Indoor
Navigation (IPIN), 13-15November 2012.

[11] Wendel J. (2011)ntegrierte Navigationssystel: Sensordatenfusion, GPS und ina-
le Navigation Oldenbourg Verlag, Miinchen.

BIOGRAPHICAL NOTES

Prof. Dr.-Ing. Reiner Jager

Professor for Satellite and Mathematical Geodesljugtment and Software Devel-
opment at Karlsruhe University of Applied Scien(dSKA)

Head of the Laboratory of GNSS and Navigationhef institute of Geomatics at IAF
and of the joint RaD project "GNSS-supported lowgtaoulti-sensor systems for
mobile platform navigation and object geo-referagti(www.navka.de)

Member FIG Commission 5 WG 5.4 Kinematic Measuresien

CONTACTS

Jan Zwiener, M.Sc.

University of Applied Sciences — Institute of Apgadi Research (IAF)
MoltkestralRe 30

76133 Karlsruhe

Germany

Tel. +49 (0)721 925-2586

Fax +49 (0)721 925-2927

Email: Jan.Zwiener@HS-Karlsruhe.de

Website: www.navka.de



